proof forms

name	definition	to prove	once known
general			
direct	If p then q .	Assume p is true. so q is true. Therefore if p then q .	If you also know that p is true, then you can say q is true.
indirect	If p then q .	Assume q is not true. so p is not true. Therefore if p then q .	If you also know that p is true, then you can say q is true.
contradiction	<i>p</i> is true.	Assume p is not true. so we get a contradiction. Therefore p is true.	<i>p</i> is true.
equivalence	p if and only if q .	so if p then q . so if q then p . Therefore p if and only if q .	If p then q and if q then p .
integers			
even	A number <i>n</i> is even if and only if there exists some integer <i>k</i> such that n = 2k.	so $n = 2k$. so k is an integer. Therefore n is even.	There is some integer k such that $n = 2k$.
odd	A number <i>n</i> is odd if and only if there exists some integer <i>k</i> such that n = 2k + 1	so $n = 2k + 1$. so k is an integer. Therefore n is odd.	There is some integer k such that $n = 2k + 1$.
divides	For two numbers <i>a</i> and <i>b</i> , $a b$ if and only if there exists some integer <i>k</i> such that $ak = b$.	so $ak = b$. so k is an integer. Therefore $a b$.	There is some integer k such that $ak = b$.
sets			
subset	For any sets A and B, $A \subseteq B$ if and only if for any element x, $x \in A \rightarrow x \in B$	Assume that for some x , $x \in A$. so $x \in B$. Therefore $A \subseteq B$.	If you also know $x \in A$, then you can say $x \in B$.

name	definition	to prove	once known
equality	For any sets A and B, $A = B$ if and only if $A \subseteq B$ and $B \subseteq A$.	so $A \subseteq B$. so $B \subseteq A$. Therefore $A = B$.	$A \subseteq B$ and $B \subseteq A$.
union	$x \in A \cup B$ if and only if $x \in A$ or $x \in B$.	so $x \in A$ or $x \in B$. Therefore $x \in A \cup B$.	$x \in A$ or $x \in B$.
intersection	$x \in A \cap B$ if and only if $x \in A$ and $x \in B$.	so $x \in A$. so $x \in B$. Therefore $x \in A \cap B$.	$x \in A$ and $x \in B$.
complement	$x \in \overline{A}$ if and only if $x \notin A$.	so $x \notin A$. Therefore $x \in \overline{A}$.	$x \notin A$.
powerset	$x \in P(A)$ if and only if $x \subseteq A$.	so $x \subseteq A$. Therefore $x \in P(A)$	$x \subseteq A$.
set-builder	$x \in \{a P(a)\}$ if and only if $P(x)$ is true.	so $P(x)$ is true. Therefore $x \in \{a P(a)\}$.	P(x) is true.
functions			
one-to-one	A function f is one-to-one if and only if for any x and y in the domain of f, whenever f(x) = f(y) then $x = y$.	Assume we have an x and y such that $f(x) = f(y)$. so $x = y$. Therefore f is one-to-one.	If you also know f(x) = f(y), then you can say $x = y$.
onto	A function f is onto if and only if for any y in the co-domain of f , there is an x in the domain such that f(x) = y.	Assume y is in the co-domain of f. so $f(x) = y$. Therefore f is onto.	If you also know that y is in the co-domain of f, then you can say there is an x such that $f(x) = y$.
one-to-one corre- spondence	A function f is a one-to-one correspondence if and only if f is one-to-one and f is onto.	so <i>f</i> is one-to-one. so <i>f</i> is onto. Therefore <i>f</i> is a one-to-one correspondence.	<i>f</i> is one-to-one and <i>f</i> is onto.
inverse	A function g from domain C to co- domain D is an inverse of a func- tion f from domain D to co-domain C, if and only for every element x in D, $g_{of}(x) = x$ and for every element y in C, $f_{og}(y) = y$.	Assume $x \in D$. so $g \circ f(x) = x$. Assume $y \in C$. so $f \circ g(y) = y$. Therefore g is an inverse of f.	If you also know $x \in D$, then you can say $g \circ f(x) = x$. If you also know $y \in C$, then you can say $f \circ g(y) = y$.

name	definition	to prove	once known
relations			
composition	$aR \circ Sb$ if and only if there is some <i>c</i> such that aRc and cSb .	so <i>aRc</i> . so <i>cSb</i> . Therefore <i>aR^oSb</i> .	There is some c such that aRc and cSb .
power	aR^nb if and only if $aR^{n-1}aRb$.	so $aR^{n-1} Rb$. Therefore aR^nb .	$aR^{n-1}aRb$.
reflexivity	A relation R is reflexive if and only if for any element a in the domain of R , aRa .	Assume <i>a</i> is some element of the domain of <i>R</i> . so <i>aRa</i> . Therefore <i>R</i> is reflexive.	If a is an element of the domain of R , then aRa .
symmetry	A relation R is symmetric if and only if whenever aRb , then bRa .	Assume we have an a and b such that aRb . so bRa . Therefore R is symmetric.	If you also know <i>aRb</i> then you can say <i>bRa</i> .
antisymmetry	A relation R is anti symmetric if and only if whenever aRb and bRa, then $a = b$.	Assume we have an a and b such that aRb and bRa . so $a = b$. Therefore R is antisymmetric.	If you also know aRb and bRa then you can say $a = b$.
transitivity	A relation R is transitive if and only if whenever aRb and bRc , then aRc.	Assume we have an a , b , and c such that aRb and bRc . so aRc . Therefore R is transitive.	If you also know <i>aRb</i> and <i>bRc</i> then you can say <i>aRc</i> .
equivalence	A relation R is an equivalence relation if and only if R is reflexive, symmetric, and transitive.	 so <i>R</i> is reflexive. so <i>R</i> is symmetric. so <i>R</i> is transitive. Therefore <i>R</i> is an equivalence relation. 	<i>R</i> is reflexive.<i>R</i> is symmetric.<i>R</i> is transitive.
inverse	$(a, b) \in \mathbb{R}^{-1}$ if and only if $(b, a) \in \mathbb{R}$.	so $(b, a) \in R$. Therefore $(a, b) \in R^{-1}$.	If you also know $(b, a) \in R$, then you can say $(a, b) \in R^{-1}$.
identity	A relation <i>I</i> is an identity relation of the domain <i>A</i> if and only if, for any other relation <i>R</i> over <i>A</i> , $R \circ I = R$ and $I \circ R = R$.	Assume <i>R</i> is a relation over the domain <i>A</i> . so $R \circ I = R$. so $I \circ R = R$. Therefore <i>I</i> is an identity rela- tion of the domain <i>A</i>	If you also know that <i>R</i> is a relation over the domain <i>A</i> , then you can say $R^{o}I = R$ and $I^{o}R = R$.

name	definition	to prove	once known
cardinality			
equinumerous	Two sets A and B are equinumer- ous if and only if there exists a func- tion f from A to B which is a one- to-one correspondence.	so <i>f</i> is from <i>A</i> to <i>B</i> . so <i>f</i> is a one-to-one corre- spondence. Therefore <i>A</i> and <i>B</i> are equi- numerous.	There exists a function f from A to B which is a one-to-one correspondence.
less numerous	A set A is less numerous than a set B if and only if there exists a function f from A to B which is one-to-one.	so f is from A to B . so f is one-to-one Therefore A is less numerous than B .	There exists a function f from A to B which is one-to-one.